量子计算的机器学习

2020-12-26

量子计算的真正潜力在于建立一个由经典段和量子段共同组成的管道。对于科学应用,我们必须计算粒子的基态。这一问题在研究化学反应和平衡时往往很重要。基态被定义为粒子处于最低能级的状态,因而也是最稳定的状态。


传统上,要获得基态,需要从粒子态的本征向量中计算出最小本征值,这些本征向量由称为 哈密顿(Hamiltonian)量的矩阵来表示。对于小型系统,经典计算机在求解时并不会很费力,但对含有大量粒子的大系统来说,这一简单的任务将以指数方式增长,很快就会破坏可用的计算资源。


但是,如果我们使用混合的量子机器学习算法,这种搜索空间的增加就变得容易处理。变分量子本征求解器(Variational-Quantum-Eigensolver ,VQE)利用经典算法和量子算法来估计哈密顿量的最低本征值。


简而言之,它的量子部分叫做 ansatz,可以智能地搜索出粒子的所有可能状态的空间。经典部分通过梯度下降来调整 ansatz 参数,使其接近最优解。这一组合表明,量子计算机在这类粒子模拟任务中特别有用。


bd07.jpg


在过去的几年里,其他各种量子机器学习算法也得到了发展。用于经典 k- 均值聚类的最著名的量子算法优化了向量之间的 Lloyd 经典距离计算子程序(Rebollo-Monedero 与 Girod,2009 年),以将经典O(NkM)计算复杂度呈指数级地降低到O(Mklog(N)),其中k是聚类的数量,M是训练样本的数量,并且N是特征计数(Biamonte 与 Wittek,2017 年,第 195~202 页)。


研究人员还研究了量子计算机在运行神经网络方面的能力。尽管神经网络的稳健表达在量子领域仍然任重道远(Schuld 与 Sinayskiy,2014 年),但学者们已经提出了各种方法来用量子电路来表示经典的神经网络。


例如,来自苏黎世的瑞士联邦理工学院和 IBM Q 的研究人员就经典神经网络和量子神经网络的维数、可最优性和训练性进行了比较。(Abbas 等人,2020 年)


bd08.jpg


Abbas 等人利用模型的维数来比较不同神经网络的能力。研究结果表明,量子神经网络结合了良好的特征图(对数据进行编码),使其有效维数高于经典神经网络。此外,与经典神经网络不同的是,量子神经网络提供了更好的 Fisher 信息矩阵,并且特征值更均匀,不为零。这种量子神经网络在 IBM 的 27 位量子比特机器上的 Iris 数据集 上,于经典神经网络相比,训练和收敛速度更快。


分享